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Note

This appendix presents a method for importing optical generation profiles (or
other arbitrary profiles) for use with the TCAD Sentaurus software suite. It is
intended to assist others with the application of this technique. Introductory ma-
terial and simulations performed using this technique are presented and discussed
within the main chapters of the thesis.
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Appendix B
Method of integrating Lumerical FDTD within

Sentaurus TCAD

Sentaurus Device, part of the Synopsys Sentaurus TCAD software suite, is a
robust semiconductor device physics simulation tool that is well-suited for sim-
ulating the performance of three-dimensional solar cell geometries such as Si
microwire photovoltaics. It includes models for most of the device physics phe-
nomena relevant to photovoltaics, which combined with its use of modern nu-
merical methods, make it one of the most capable device-physics-based solar cell
simulators available today. It can simulate arbitrary semiconductor geometries
in two or three dimensions using a finite-element mesh (grid). This permits
simulation of novel, nonplanar solar cell geometries, but can introduce several
challenges in defining the device structure for simulations. In particular, for a
typical Si solar cell, the following spatially varying quantities must be specified
throughout the simulation volume:

� Optical generation rate
� Impurity concentration (e.g., dopants or traps)
� Carrier lifetime

These profiles can be easily specified or calculated for one-dimensional structures
(e.g., Gaussian emitter doping profiles or exponential Beer’s-law optical absorp-
tion profiles), but can become more complicated for arbitrary three-dimensional
structures. For these reasons, the TCAD software includes numerous capabilities
to specify analytical profiles, to simulate processing steps (e.g., diffusion doping),
and to calculate optical absorption (e.g., ray-tracing, FDTD) in 3D structures.
However, in certain situations we have found it useful to manually specify these
profiles, based on external calculations, assumptions, or simulations. This ap-
pendix presents a method that has been developed to map arbitrary external
profiles onto the numerical mesh used for Sentaurus Device simulations.

B.1 Introduction

In this thesis work, techniques were developed to import optical generation pro-
files calculated by FDTD simulations (Lumerical FDTD Solutions)* into device
physics simulations (Sentaurus Device). This enabled comprehensive optoelec-
tronic modeling of Si microwire-array solar cells, as presented in Chapter 2.

*Our choice of Lumerical FDTD software over the Sentaurus (internal) FDTD methods
simply because of the expertise base for the former within our group.
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Figure B.1. Schematic diagram of simulation geometries for modeling optical
(left) and electrical (right) behavior of horizontally oriented single-microwire Si solar
cells.

This process was implemented within the Sentaurus Workbench (SWB) en-
vironment, extending its tool database to include the Lumerical CAD/FDTD
programs as well asMATLAB scripts. MATLAB provides a convenient program-
ming environment well-suited to the task of processing and storing the photo-
generation profiles for device-physics simulations. Integrating these programs
within SWB enabled us to automate the entire simulation process (structure
generation, FDTD simulations, device physics simulations, and variable extrac-
tion), making use of the software’s preprocessor to generalize the configuration
of each simulation step. This allowed us to employ SWB’s automated design fea-
tures (such as parametric sweeps and numerical optimization), and also to take
advantage of its project interface for generating, executing, and keeping track of
a large number of simulations and parameters. For example, the FDTD simu-
lations presented in Section 5.4.1 were implemented as a project within SWB,
and can be run from start to finish with virtually no user interaction.

In this appendix, we describe the major steps of this simulation approach,
and show how it has been integrated into the SWB environment. Source code
is included for each key step, including a MATLAB script that generates mesh
files containing arbitrary input profiles for Sentaurus simulations. To illustrate
the use of these techniques, we describe a project that simulates the spectral
response and solar J–V behavior of a single-wire solar cell structure like those
fabricated in Chapter 5. The general structure of the simulated device is shown
in Figure B.1. Both the optical (FDTD) and electrical (device physics) simu-
lations are performed in two-dimensional coordinates. The particular details of
the FDTD and device physics simulations are not discussed here; they closely
follow those presented elsewhere in this thesis. Our discussion focuses instead
on the procedures and tools required to import the optical generation profiles
into Sentaurus Device utilizing the automation features of the SWB platform.
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B.1.1 Requirements

This work made use of the following software under an x86 64 Linux environ-
ment:

� TCAD Sentaurus C-2009.06-SP2

� MATLAB R2009b

� Lumerical FDTD/CAD v6.5.5

The computational requirements vary depending on the size and complexity
of the simulated structure. The two-dimensional structures discussed in this ap-
pendix can be easily simulated on modern personal computers having a few GB
of RAM. The larger three-dimensional structures (i.e., the Si microwire-array
solar cells presented in Chapter 2) were simulated on individual workstations in
our lab, the most powerful of which were SunFire x2270 servers (Sun Microsys-
tems) having 48 GB RAM (1300 MHz DDR3) and dual 64-bit processors (Intel
Xeon 5500-series, 3 GHz).

Use of these techniques requires a moderate understanding of the TCAD
software suite, including Sentaurus Device, the mesh generation tools, and the
SWB preprocessor and project environment. These instructions also assume
familiarity with Linux environments, MATLAB, and the Lumerical FDTD soft-
ware.

B.2 Understanding the mesh files

Sentaurus operates on a finite element mesh, which consists of vertices, edges,
and elements that store the discretized state of a device during simulations
(e.g., doping, carrier concentration, or electric field). Information describing the
layout of the mesh is known as the grid, which defines the physical position
(coordinates) of each mesh element. Information describing the physical state
of the device is known as the data, which provides the numerical value of each
simulated quantity at each mesh element. Combined, the grid and data specify
the device structure for Sentaurus simulation.

There are two file formats for storing grid and data information. The first
and default type is “TDR”—a binary file format which combines both the grid
and data information into a single .tdr file. This results in a smaller file size and
eliminates any confusion about which grid belongs with which data. However
it has proven difficult to read or write to these binary files without knowledge
of their format. Our scripts do not presently support .tdr files. The other file
format,“DF-ISE”, is a text-based format which can be deciphered and written
by relatively simple parsing scripts. A DF-ISE mesh consists of a grid (.grd) file
and one or more data (.dat) files. For typical simulations, there is a single .dat
file corresponding the .grd file, which contains data values for all simulation
input profiles. However, the simulation input profiles can be divided amongst
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multiple .dat files, each of which corresponds to the same .grd file but contains
different physical quantities. For example, in the project highlighted herein, a
Sentaurus mesh generation program generates the original .grd file as well as
the .dat file describing the device doping profiles, while our MATLAB script
generates a separate .dat file describing the optical generation profile. DF-ISE
and TDR files can be merged, separated, and converted using the Sentaurus
Data Explorer (TDX) program as described in the TCAD users manuals.

When using DF-ISE files, Sentaurus Device requires a grid file and a data file
to specify the device structure (i.e., dimensions and doping profiles). Optionally,
additional data files can be used to specify optical generation, SRH lifetime, or
possibly other physical quantities (see the File section of the Sentaurus Device
manual). Each .dat file must correspond to the same .grd file. During the
simulation, Sentaurus will also save one or more new .dat files (depending on the
command file settings), specifying the state of the mesh quantities (e.g., electric
field) within the evolving simulation. A corresponding .grd file does not need
to be saved (except, possibly, if mesh is modified by adaptive meshing which I
have not explored).

Simulation meshes can be viewed using the program Tecplot SV . Tecplot
can directly load and display TDR files since they contain both the grid and
data components of the mesh. To view DF-ISE files in Tecplot, however, both
a .grd and one (or more) .dat files must be specified. To simplify this, the
primary .dat file is typically always given the same base filename as the .grd

file. For a combined Lumerical/Sentaurus simulation, the typical set of mesh
files for each experiment will include:

n1 pof.grd the grid generated by the mesh generation tool

n1 pof.dat the corresponding device data profiles (doping, etc.)

n2 optgen.dat a data file generated by our MATLAB script (speci-
fying the optical generation profile)

n3 des.dat a data file automatically produced after the final it-
eration of Sentaurus Device, containing all physical
quantities requested within the Plot section of the
command file

n3 ISC des.dat a data file recorded at 0 V bias, produced by a in-
struction within the Solve section of the command
file

n3 nearVOC des.dat a data file recorded when the simulated device cur-
rent crosses 0 A (i.e., near Voc), also produced by an
instruction within the Solve section of the command
file

In the above file names, the numbers 1 , 2 , and 3 would correspond to the
node numbers (in SWB) of the mesh generation step, our MATLAB script step,
and the Sentaurus Device simulation step, respectively. To visualize these mesh
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files—for example, that of the MATLAB step, the following command can be
used to invoke Tecplot SV at the shell prompt:*

tecplot_sv nA_pof.grd nB_optgen.dat &

B.2.1 Generating custom data files

The grid file contains all the information one needs to generate a new data
file containing a user-specified (external) profile. The grid file maps each mesh
element to a physical point in space (x,y), and it is usually straightforward to
calculate the value of the external profile P (x,y) for each mesh element. For
our earlier work (PVSC 2009), I wrote a program that parsed each .grd file,
constructing a map of the mesh in memory; then calculated the profile values for
each mesh element and generated a properly formatted .dat file from scratch.

More recently, however, I have found an easier approach in which we instruct
the Sentaurus mesh generation program to store the spatial coordinates of each
mesh element within the initial .dat file (which normally only contains the
doping data). This saves us the trouble of parsing the .grd file and building the
mesh in memory. Reading the .dat file provides both the spatial coordinates
(x,y) of each mesh element, as well as the correct order in which to write the
desired profile values P (x,y) in the new .dat file. This conceptually simpler
approach is presented here.

B.3 Step 1: Generating the mesh

Structure generation for Sentaurus TCAD tools is typically accomplished using
Sentaurus Structure Editor (also referred to as SDE). This provides a scriptable,
graphical environment for specifying material shapes, doping, meshing parame-
ters, etc. However, the mesh itself is not generated by SDE, rather, it is produced
by a command-line meshing program that is invoked by SDE. When the mesh is
requested, SDE converts its model into a command file for the meshing program,
runs the program, and then displays the resulting mesh in its GUI. Although
this generally simplifies the process of mesh generation, it is important to un-
derstand the behavior of the underlying mesh program and the format of the
mesh command file prepared by SDE. Most importantly, to instruct the mesh
program to store the x- and y- coordinates of each mesh element within the data
file, the following commands must be appended to the mesh command file:

Definitions {
AnalyticalProfile "XPosition" {

Species = "PMIUserField0"
Function = General(init="", function = "x", value = 10)

}
AnalyticalProfile "YPosition" {

*The -mesa rendering option is also required for compatibility with some remote X11
clients, such as Cygwin-X or Xming, which we often use for remote access from Windows-
based machines.
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Species = "PMIUserField1"
Function = General(init="", function = "y", value = 10)

}
}

Placements {
AnalyticalProfile "XPosition" {

Reference = "XPosition"
EvaluateWindow {

Element = material ["Silicon"]
}

}
AnalyticalProfile "YPosition" {

Reference = "YPosition"
EvaluateWindow {

Element = material ["Silicon"]
}

}
}

These commands instruct the mesh program to store the value of the func-
tions x and y as PMIUserField0 and PMIUserField1 in the mesh data file.
The species names “PMUuserFieldN ” must be used (rather than “XPosition”
or “ArbitraryName”) because they are valid DATEX fields. (See Sentaurus
user’s manuals for a list of valid DATEX fields.) Note that the above syn-
tax could also be used to specify arbitrary analytical profiles, such as dop-
ing (Species = "BoronActiveConcentration") or even optical absorption
(Species = "OpticalGeneration").

To issue the above commands to the meshing program, they must be saved as
a text file within the project directory (for example, mk store xy.cmd) and then
appended to the meshing command file prepared by SDE, using the following
command syntax:

(sdedr:append-cmd-file "mk_store_xy.cmd")

This command should immediately precede the command to invoke the meshing
program, (sde:build-mesh), within the SDE command file.

B.3.1 Meshing strategy

Obtaining an optimal mesh is generally the most time-consuming step for a new
Sentaurus project. TCAD Sentaurus includes three different mesh generators:
mesh, snmesh, and noffset3d. Each offers its own benefits and drawbacks, and
users should consult the manuals to understand and select the appropriate mesh
tool for the desired structure. My basic understanding of the mesh options,
based on my limited experience with 2D simulations, is as follows:

Mesh: Produces axis-aligned (rectangular) meshes with minimal triangulation.
As the most basic meshing program, it offers fewer options for “intuitive”
grid refinement, and usually requires a great deal of manual refinement
instructions (i.e., multiboxes) to produce a suitable grid. Most of the
simulations presented in this thesis were meshed using mesh with numerous
multiboxes placed over the entire device extent. Mesh also supports offset
mesh generation using the -noffset option, which I have not explored.



B.4. STEP 2: SIMULATING OPTICAL GENERATION PROFILES USING
LUMERICAL FDTD 7

SNMesh: A more advanced axis-aligned mesher, snmesh offers more conve-
nient refinement options (e.g., specifying finer meshing at surfaces or re-
gion boundaries), and tends to produce more smoothly varying grids with
greater overall connectivity. However, snmesh cannot produce DF
-ISE meshes, and is thus not directly compatible with our profile conver-
sion scripts at this point. It may be possible to convert its .tdr meshes to
DF-ISE format, but this has not been investigated.

NOffset3D: Produces meshes by “offsetting” material surfaces and boundaries
based on specified grid densities and offset distances (i.e., an “onion peel”
approach). After offsetting boundaries, it fills the remaining areas/vol-
umes with triangular or tetrahedral meshes. It can produce very efficient
grids for non-axis-aligned or 3D structures, but in my experience with the
single-wire radial-junction structure shown in Figure B.1, has suffered from
perplexing and erratic behavior that has requires fine-tuning of its input
parameters as well as careful scrutiny of each grid it produces. I suspect
that this is due to the presence of a closed circular boundary in the struc-
ture, which seems to causes gaps or overlaps in the grid of the concentric
offset layers. I have nonetheless been able to produce a variety of efficient
simulation grids for modeling these devices, and the method has worked
reliably for other structures.

Figure B.2 is a screenshot illustrating the meshes produced by each of the
three mesh generation programs (for the same radial p-n junction geometry).
The oxide region (red) surrounding the wire provides a boundary at which grid
refinement parameters can be specified (for snmesh and noffset3d only), but
does not serve any other purpose in our simulations. SNMesh and noffset3d both
produced suitable grids, whereas the mesh-generated grid would likely require
further refinement near the oxide/Si interface. For this structure, noffset3d was
ultimately favored for its efficient handling of the curved p-n junction interface
and compatibility with DF-ISE-format mesh files. Within the project, SDE was
employed to specify the device structure and invoke noffset3d to generate the
mesh. However, noffset3d required that several additional offsetting parame-
ters be specified in its command file (which were added using append-cmd-file

in SDE), in order to generate a suitable mesh. Furthermore, following a careful
inspection of the resulting grid, several refinement boxes were added (manually)
to patch inadequately meshed areas that appeared to be caused by mismatches
between the circumference of the innermost vs. outermost offset layers.

B.4 Step 2: Simulating optical generation profiles using
Lumerical FDTD

Lumerical calculates the steady-state electromagnetic field phasor vectors E⃗ and
H⃗ throughout the simulation volume. Assuming that all absorption is due to
band-to-band absorption within the semiconductor material, the optical gener-
ation rate is determined by the energy loss per unit volume, or divergence of
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the Poynting vector. The equations work out such that Gopt can be determined

directly from the electric field magnitude ∣E⃗∣ and the imaginary part of the
material’s permittivity, ϵ′′, as:

Gopt =
R{∇ ⋅ P⃗}
2Eph

=
πϵ′′ ∣E⃗∣

2

h
(B.1)

These calculations can be performed within Lumerical, making use of its
MATLAB-like programming environment and built-in function library. First,
however, each simulation must be configured to record the quantities ϵ′′ and ∣E⃗∣.
This is accomplished by a adding an index monitor ("indexMonitor" in our ex-
ample code) and a frequency-domain power monitor ("fldMonitor") throughout
the simulation volume, and configuring them to record the appropriate quan-
tities (e.g., Ex, Ey, Ez, etc.) After the simulation has been run, the following
commands can be used to calculate Gopt throughout the simulation volume (note
that this example is for two-dimensional simulations):

load("simulation_filename.fsp");

freq = getdata("fldMonitor", "f");
x = getdata("fldMonitor", "x");
y = getdata("fldMonitor", "y");

E2 = getelectric("fldMonitor");
n = getdata("indexMonitor", "index_x");

omega = 2 * pi * freq;
epsilon = eps0 * nˆ2;
Pabs = 0.5 * omega * E2 * imag(epsilon);
Ngen = Pabs * 1e−6/(6.626e−34 * freq); # cmˆ−3 sˆ−1
Current = 1.61e−19 * integrate(Ngen, 1:2, x, y);

matlabsave("output_filename.mat", x, y, Pabs, Ngen);
write("Absorbed photocurrent: " + num2str(Current) + " A per um");

The above code also uses the integrate() function to calculate the overall
absorbed photocurrent of the structure (i.e., the maximally obtainable short
circuit current of a solar cell). The resulting photogeneration profile variables
are written to a MATLAB .mat file for further processing in the next step.

In addition to the direct calculation of photogeneration profiles (Gopt), it
is also useful to determine the overall absorption of the structure using appro-
priately placed* field monitors. The total absorbed photocurrent calculated by
volume integration above (Current) should always concur with the absorption
calculated based on how much energy passes through the monitors surrounding
the device (the latter calculation is aided by the transmission() function in
Lumerical).

*By appropriately placed, we mean that the monitors should form a closed (Gaussian)
surface around the absorption volume.
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Figure B.3. Effect of partial spectral averaging (PSA) on Lumerical FDTD
simulations. The absorption of a 1.61 µm thick planar Si slab (in air) is plotted,
as calculated by single-wavelength (green) and broadband (red) FDTD simulations,
with and without PSA using ∆f values calculated by equation B.2 (k = 1). All
simulations used Lumerical’s most-dense automatic grid setting. The broadband
simulation represents the best material fit we were able to obtain for Si, using up to
18 fit parameters and trying a variety of tolerance and bandwidth settings for the
fit. The black lines plot the absorption calculated by analytical means, with and
without interference considerations.

B.4.1 Partial spectral averaging

Thin, partially transparent structures can exhibit large fluctuations in their re-
flection and transmission as the illumination wavelength is varied, due to inter-
ference (the phenomena responsible for Newton’s rings). Similar effects are also
observed in FDTD, and can result in apparently “noisy” absorption calculations
as the wavelength is varied (unless the simulation wavelengths are very closely
spaced). To circumvent this problem, Lumerical offers partial spectral averag-
ing (PSA), which averages simulation results over a small frequency range (via
Lorentzian weighting) surrounding the principal simulation frequency. Given a
device structure of thickness d, refractive index n, and a simulation wavelength
of λ (and frequency f), the spectral half-width (∆f) of k interference fringes is
given by the equation:

∆f = f

1 + kdSin
λ

[Hz] (B.2)

I have found that using the value of ∆f corresponding to k = 1 gives good results
when using Lumerical’s partial spectral averaging. This concept is illustrated
in Figure B.3, in which FDTD simulations have been performed to calculate
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the absorption of a simple planar Si slab of thickness d= 1.61 µm. The re-
sults of the FDTD simulations can be compared to the analytical solution for
the absorption of this structure, calculated as described in Section 3.1.3. The
absorption calculated by FDTD simulations with vs. without PSA nearly ex-
actly agrees with the analytical solutions for incoherent vs. coherent absorption,
respectively. The figure also illustrates the difficulties we encountered attempt-
ing to perform broadband simulations of Si structures in Lumerical. For these
reasons, all FDTD modeling presented in this thesis was performed using single-
wavelength simulations, with partial spectral averaging where appropriate. The
syntax to employ PSA in the single-microwire Si solar cell structures discussed
herein is shown in the source code listings of section B.10.

B.5 Step 3: Generating the external-profile data file

The external-profile data file is generated using a MATLAB script (included in
the source code listings of section B.10). This script first opens the .dat file pro-
duced in the initial mesh generation step, reading the values of PMIUserField0
and PMIUserField1 for each mesh element. Then, it produces a new .dat file
containing the values of the external profile. A user-definable function deter-
mines the profile value at each spatial position. The script can be modified in
several locations to specify the names of the input and output files, the names
of the regions to process, the name of the output field, and most importantly,
the function that determines the external profile value as a function of spatial
coordinates. Comments within the script file provide details of how these mod-
ifications are made. The results of the script can be verified in Tecplot SV, as
illustrated in Figure B.4.

To map profile values from the fixed-pitch (rectangular) FDTD grid to the
varying element dimensions of the finite-element mesh, it is most conceptually
simple to employ bilinear interpolation (the method used in the provided source
code listing).* However, this method could potentially introduce aliasing ar-
tifacts if the absorption profiles vary on a shorter length scale than the finite
element mesh. For example, mild distortion of the sinusoidal profile is visible in
the center of the wire shown in Figure B.4, where the finite-element grid is most
coarsely spaced.

One solution to this problem might be to apply an antialiasing (averaging)
filter to the FDTD dataset that conserves the total optical generation within
the simulation volume (assuming that such “blurring” of Gopt is insignificant
in terms of the electrical behavior of the device). A better solution is to use
MATLAB’s built-in library of Delaunay triangulation functions to average the
FDTD grid cells over the Voronoi region corresponding to each mesh element.
An implementation of this approach is depicted in Figure B.5. We start by con-
structing the Delaunay triangulation corresponding to the finite-element mesh.

*Because the FDTD grid pitch must always be smaller than length scales of absorption or
resonant field profiles, it is usually suitable to employ nearest-neighbor interpolation, which is
considerably faster for large simulation volumes. We use bilinear interpolation here because it
does not add significant processing time for the example 2D structures.
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Figure B.4. Result of running the MATLAB script on the noffset3d-generated
mesh from Figure B.2, using a sinusoid profile function to test the mapping (visual-
ized in Tecplot SV).

We then iterate across the FDTD grid, assigning each grid cell (or “pixel”) to
the nearest finite-element vertex. We can finally iterate through each element
of the finite-element mesh and calculate the profile value to store in the re-
sulting .dat file: elements to which one or more FDTD cells were mapped are
assigned the average value of these cells, whereas elements to which zero cells
were mapped are assigned the value of the nearest FDTD cell (or an interpolated
value). This approach is not strictly conservative, but is certainly more so than
linear interpolation. In our implementation, we utilized a script that parsed the
.grd file so that a constrained Delaunay mesh could be constructed for each
region. However, it might also be feasible to implement this approach with
only the knowledge of the mesh coordinates and physical extent of each region,
masking the FDTD grid-mapping by region instead of confining the Delaunay
triangulation by region.

In most cases, simple interpolation has proven suitable for importing FDTD
generation profiles onto Sentaurus Device simulation meshes. For example, this
approach yields accurate results for the simulation grid shown in Figure B.5
for λ ≳ 400 nm, below which wavelengths the shallow excitation profile is not
conservatively mapped to the finite-element mesh. It is important to remember
that, even if perfectly conservative optical generation mapping is performed,
the finite-element mesh must still be dense enough to accurately represent the
actual optical generation profile for device physics simulations. Thus, the most
straightforward way to ensure accuracy in the grid conversion process is to simply
increase the density of the device-physics mesh (if computationally feasible) until
the largest mesh cells are of similar size as the FDTD cells, at which point
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Figure B.5. Use of Delaunay triangulation to improve the accuracy of profile
conversion. Left: finite-element simulation mesh for a d= 1.61 um single-wire
solar cell structure. The magenta lines indicate the contact electrodes, and the
blue line indicates the p-n junction. Right: profile conversion algorithm applied
to a central region of the wire. The orthogonal grid lines lines delimit the FDTD
grid cells (“pixels”), and the black markers indicate the vertices of the finite-element
mesh. The white lines show the Voronoi polygons for each mesh region. Each FDTD
cell is colored based on which mesh element to which it is mapped (the colors are
randomly chosen to illustrate the mapping).
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aliasing is not a concern. As a test, numerical integration over the FDTD grid
(as calculated in Lumerical or MATLAB) should produce the same approximate
result as numerical integration over the device-physics mesh in Tecplot SV.*

B.6 Step 4: Loading the external profile in Sentaurus.

Sentaurus Device is invoked using the following File section syntax to specify
the external optical generation file that was generated generated in the previous
step.

File
{

Grid = "n@node|sde@_pof.grd"
Doping = "n@node|sde@_pof.dat"
OpticalGenerationFile = "n@node|matlab@_optgen.dat"
...

}

The File section can also include directives that cause Sentaurus Device to load
external profile values for several other fields, including carrier lifetime, emission
rate, or trapped charge density.

B.7 Integrating these steps into SWB

The above steps, as well as additional steps to run and process the Lumerical
FDTD simulations, can be integrated into Sentaurus Workbench (SWB) as user-
configured tools. User-configured tools are specified in the user’s tooldb (tool
database) file, which is located in the STDB directory, and can be edited from
within SWB by selecting Edit→Tool DB→User. To add the features of this
appendix to SWB, one can copy the Tcl code provided in section B.10 into his
or her tooldb file (creating a new file if it does not exist).

The provided tooldb file allows SWB projects to script and invoke Lumerical
FDTD/CAD and MATLAB steps as part of the simulation process flow. A
screenshot of a project that simulates a single-microwire Si solar cell structure
(like that depicted in Figure B.1) is shown in Figure B.6. The process steps
employed by this project are:

1. Sentaurus Structure Editor—builds the finite-element mesh. Parame-
ters for this step could include device dimensions or doping levels.

*Tecplot SV is unaware of whether two-dimensional simulation data correspond to
planar or cylindrical devices. For cylindrical devices, the simulation-plane density profiles
(e.g., OpticalGeneration) must be (manually) multiplied by the circumferential depth (2πx,
assuming cylindrical symmetry about x= 0) to yield physically meaningful values when
integrated. This can be accomplished by specifying a new data set in Tecplot SV (via “alter
data”), such as the following:
{CylOptGen [umz^-1 umr^-1 s^-1]} = 6.2832*1E-4*{OpticalGeneration
[cm^-3*s^-1]}*{X [um]}
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2. Lumerical CAD—prepares the Lumerical FDTD simulation structure.
Parameters could include wavelength and polarization.

3. Shell—executes the Lumerical FDTD simulation using a csh script.

4. Lumerical CAD—loads the completed FDTD simulation, processes the
results, and saves the optical generation profile and the FDTD grid in a
MATLAB-format (.mat) data file.

5. MATLAB—loads the finite-element mesh from step 1 and the optical
generation profiles from step 4. Generates the .dat file specifying the
optical generation profile on the finite-element mesh.

6. Sentaurus Device—simulates the I –V characteristics of the solar cell
using the optical generation profile data produced in step 5. Typical pa-
rameters could include carrier lifetimes and surface recombination veloci-
ties.

7. Inspect—extracts the operating parameters of the device (e.g., Isc, Voc,
FF , η, E.Q.E., or I.Q.E.) and exports them as project variables in the
SWB table.

This framework provides means to automate all of the simulation steps pre-
sented in this appendix, allowing each experiment to vary the device and simula-
tion parameters such as geometry, material quality, and illumination wavelength.
This platform has proven remarkably useful in my work, not only for performing
elaborate optoelectronic simulations, but also for automating simple parametric
sweeps in FDTD simulations. The SWB environment is particularly advanta-
geous from an organizational and archival standpoint: SWB projects not only
provide a tabulated record of the simulation parameters and results for each
experiment, but also retain the input and output files for each simulation step
in their directories, all of which are easily referenced by node number.

B.8 Simulating solar illumination

In the project shown in Figure B.6, each experiment corresponds to a single
illumination wavelength (and polarization state). This allows the polarization-
dependent spectral response of the device to be simulated in a straightforward
manner. To simulate broadband, unpolarized illumination such as sunlight
(i.e., the AM 1.5G spectrum), several general approaches are possible:

Single-experiment, broadband illumination: A single Lumerical simula-
tion can utilize a broadband light source which spans the solar spectrum.
During post-processing, the data can be normalized and weighted to yield
the simulated response under solar illumination. Further details of this
method are provided in the Lumerical reference guide. ( )

Although this approach may be the simplest, I have thus far been un-
able to adequately model the dispersion of Si across the solar spectrum in

http://www.lumerical.com/fdtd_online_help/solar_plasmonic.php
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Lumerical (see Figure B.3). Aside from the stark inaccuracy of my broad-
band simulation attempts, they have required manyfold greater memory
and CPU time than the combined requirements of single-wavelength sim-
ulations spanning λ= 300 to 1100 nm in 20 nm increments.

Multi-experiment, summed monochromatic illumination: For each de-
vice geometry, numerous single-wavelength simulations are run to span
the solar spectrum (each as a separate experiment, stemming from a com-
mon SDE node). To simulate solar illumination, an additional experiment
is configured with a special keyword or value in place of a normal nu-
merical value for the parameter wavelength (such as "AM15" or 15). This
experiment’s CAD/FDTD steps are skipped; instead, the combined and
weighted FDTD results from the preceding single-wavelength simulations
provide the OpticalGeneration profile for its Sentaurus Device step. The
special wavelength keyword triggers the MATLAB script to load the single-
wavelength results, then sum and weight them appropriately for the desired
solar spectrum, and store this composite photogeneration profile in a .dat

file for the Sentaurus simulation.

Using this approach, both the 1-sun efficiency and the spectral response of
the cell can be easily recorded in the project table within SWB. However,
this method is somewhat cumbersome as it requires diligence in experi-
mental layout and execution order, since all the single-wavelength FDTD
simulations must be run before the broadband illumination profile can
be calculated. For this reason it is not amenable to optimization within
SWB. Nonetheless this is the technique I employ for most applications.
By separating experiments by scenario, and by careful naming of the op-
tical generation files, I am able to complete this process in two steps: the
first, to specify and run all single-wavelength simulations; and the second,
to run the broadband simulations.

Single-experiment, summed monochromatic illumination: The single-
wavelength approach above can be condensed into a single experiment
within SWB. The first Lumerical CAD step is scripted to prepare multiple
single-wavelength simulation files to span the solar spectrum (under a sin-
gle project node prefix). The FDTD execution step is scripted to run all of
these simulations. Similarly, the second Lumerical and the MATLAB steps
are altered to sequentially process a multitude of individual simulations.
Finally, after processing all single-wavelength simulations, the MATLAB
script can then weight and sum them appropriately to produce a single
OpticalGeneration profile representing broadband solar illumination.

With this approach, wavelength and polarization would no longer appear
as experiment parameters, and thus spectral response data would not be
tabulated within the SWB project view. However, the scripts could easily
be modified to record spectrally resolved simulation results as separate
output files (just as Sentaurus Device produces .plt files recording the
results of its internal I –V sweeps). This approach is also compatible with
numerical optimization in SWB.
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Figure B.7. Discrete solar spectrum script output.

A tabulation of weighting factors for discrete single-wavelength simulations
to approximate solar illumination (corresponding to AM 1.5 global and direct
reference spectra) is provided in section B.11 at the end of this appendix. Also
included is a general-purpose MATLAB script for integrating or binning solar
spectra. A screenshot of a discrete solar spectrum produced by this script is
shown in Figure B.7.

B.8.1 Tips

� A single-wavelength source magnitude of 86.6 in Lumerical corresponds
to 1 mW⋅cm−2 illumination intensity. This simplifies the weighting of each
profile, as each can be directly multiplied by the desired illumination inten-
sity (in mW⋅cm−2) of the discrete (“binned”) solar spectrum. The source
magnitude (E0) is specified in units of V⋅m−1, thus the following equation
determines illumination intensity:

⟨S⟩ = 1

2µ0c
E2

0 =
ϵ0c

2
E2

0 [W⋅m−2] (B.3)

� If polarization-dependent simulation data are not needed, each single-
wavelength FDTD simulation can be run (simultaneously or consecutively)
for both TE and TM polarization and then averaged in a single project
node.
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B.9 Tool information

B.9.1 Lumerical CAD (lumcad)

Lumerical CAD is used twice in our method of SWB integra-
tion. The first CAD step prepares and saves (but does not
execute) the simulation structure. An intermediate shell step
executes the FDTD simulation. The second CAD step then
loads the simulation results, extracts the optical generation
profiles, and saves this information to a MATLAB .mat file for
subsequent processing.*

Input files :

� Script file (lumcad lcs.lsf): The Lumerical script file, which will
be pre-processed prior to invoking CAD. Scripts should call exit(2)
at the end of their routine, otherwise the CAD window will remain
open.

� Template structure (lumcad template.fsp): Instead of using a
script to generate the entire Lumerical simulation from scratch, it is
often convenient to manually generate the structure beforehand as
a “template” file. This way, a simple script can load the template
structure, make only changes pertaining to the experiment’s param-
eters, and then save the resulting structure under the appropriate
filename for the current node.

Output files :

� Lumerical structure (n@node@ lumstr.fsp): The simulation
structure, saved and ready for simulation.

� Lumerical shell script (n@node@ lumstr.sh): This is the shell
script that Lumerical automatically generates when the above struc-
ture is saved. Executing it invokes the MPI FDTD program to
run the simulation. It is configured within CAD under the menu
Simulation→Set parallel options menu.

� Lumerical log file (n@node@ lumstr p0.log): This is the log file
produced by Lumerical FDTD as it runs the simulation.

� MATLAB MAT file (n@node@ lummat.mat): The optical genera-
tion profile information extracted from a completed simulation, saved
for subsequent MATLAB processing.

*Lumerical CAD does not have a “batch mode.” It will briefly open the GUI window while
each script is executed.
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B.9.2 Shell

The shell tool is a standard part of TCAD Sentaurus, and is
not modified by the provided tooldb file. We utilize a C-shell
(csh) script to launch the Lumerical FDTD simulations, and to
examine their output files to make sure they ran to completion.
The shell script command file is listed in section B.10.

Note: My FDTD simulations rely on Lumerical’s auto-shutoff feature to deter-
mine when to terminate a simulation. If a simulation reaches the end of
its allotted duration (“100% completion”) before encountering the auto-
shutoff criteria, I generally consider the results to be invalid. Thus the
provided shell script will mark the FDTD nodes as failed unless auto-stop
is reached.

B.9.3 MATLAB

Batch-mode MATLAB scripts are run in a nongraphical in-
stance of MATLAB, and can make use of the full library of
nongraphical MATLAB functions—including the paralleliza-
tion toolkit, which is partularly useful for dealing with large
simulation structures.

Input files :

� MATLAB m-file (matlab mat.m): When MATLAB nodes are exe-
cuted, this script file is pre-processed and then piped to the MATLAB
command prompt. Note that a new instance of MATLAB will be in-
voked for each MATLAB step; thus each node will not have access to
workspace variables in other MATLAB sessions. Upon completion,
the script should call exit(0) to quit the MATLAB session, other-
wise SWB will wait indefinitely for the program to terminate. For
this reason, it is also best to enclose all code in a try block, so that
exit(1) can be called in the event of any error.

� Other input files: One or more .mat files containing optical gener-
ation profiles from previous Lumerical CAD steps, and the DF-ISE
.dat file from the mesh generation step.

Output files :

� DF-ISE mesh data (n@node@ optgen.dat): The optical genera-
tion profile mapped to the simulation grid.
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� Other output files: The provided script will also store the mapped
photogeneration data as a MATLAB .mat format, using the naming
convention:

n@node|sde@_OptGen@Wavelen@@Polarization@.mat

This facilitates loading, weighting, and summing the numerous
single-wavelength profiles when the special wavelength value of “15”
is specified (see above).

B.10 Selected source code

This section provides the tooldb file used to integrate Lumerical and MATLAB
as tools in Sentaurus Workbench. Source code is also provided for the following
simulation steps of the single-microwire Si solar cell model highlighted above:

� The Lumerical structure generation script

� The shell script for launching Lumerical FDTD simulations from SWB

� The Lumerical data extraction script

� The MATLAB grid conversion script

Although each file is somewhat specific to the single-microwire Si solar cell struc-
ture shown here, they have been prepared in hopes of providing a clear example
of the approach we have developed for importing arbitrary input profiles for
simulations with Sentaurus Device. A MATLAB script for binning the solar
spectrum for discrete single-wavelength simulations is also provided.

B.10.1 tooldb file

Listing B.1. User tooldb file (Tcl).

#BEGIN FILE

# Lumerical / MATLAB integration for Sentaurus Workbench
# Michael Kelzenberg, 2010
# California Institute of Technology

#SPECIAL_SETTINGS BEGIN
global tcl_platform
global env
#SPECIAL_SETTINGS END

#FILE−TYPES BEGIN
lappend WB_tool(file_types) lumscript
set WB_tool(lumscript,ext) lsf
lappend WB_tool(file_types) lumstructure
set WB_tool(lumstructure,ext) fsp
lappend WB_tool(file_types) lumbat
set WB_tool(lumbat,ext) sh
lappend WB_tool(file_types) lumlog
set WB_tool(lumlog,ext) log
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lappend WB_tool(file_types) matlabm
set WB_tool(matlabm,ext) m
lappend WB_tool(file_types) matlabmat
set WB_tool(matlabmat,ext) mat
#FILE−TYPES END

#TOOL BEGIN lumcad
set WB_tool(lumcad,category) device
set WB_tool(lumcad,visual_category) device_old
set WB_tool(lumcad,acronym) lcs
set WB_tool(lumcad,after) all
set WB_manual(lumcad) /usr/lumerical/docs/FDTD_reference_guide.pdf
set Icon(lumcad) $env(STDB)/ico/cad.gif
set WB_tool(lumcad,exec_mode) batch ; # (interactive | batch)
set WB_tool(lumcad,setup) { os_ln_rel @lumscript@ n@node@_lcs.lsf "@pwd@" }
set WB_tool(lumcad,epilogue) \

{ make_sh_executable "$wdir" @node@; extract_vars "$wdir" @stdout@ @node@ }
set WB_binaries(tool,lumcad) CAD−noaccel
set WB_tool(lumcad,cmd_line) "n@node@_lcs.lsf"
set WB_tool(lumcad,input) [list lumscript lumstructure]
set WB_tool(lumcad,input,lumscript,file) @toolname@_lcs.lsf
set WB_tool(lumcad,input,lumscript,newfile) @toolname@_lcs.lsf
set WB_tool(lumcad,input,lumscript,label) "Script file..."
set WB_tool(lumcad,input,lumscript,editor) text
set WB_tool(lumcad,input,lumscript,parametrized) 1
set WB_tool(lumcad,input,lumstructure,file) @toolname@_template.fsp
set WB_tool(lumcad,input,lumstructure,newfile) @toolname@_template.fsp
set WB_tool(lumcad,input,lumstructure,label) "Template structure..."
set WB_tool(lumcad,input,lumstructure,editor) lumstructure
set WB_tool(lumcad,input,lumstructure,parametrized) 0
set WB_tool(lumcad,output) [list lumstructure lumbat lumlog matlabmat]
set WB_tool(lumcad,output,lumstructure,file) n@node@_lumstr.fsp
set WB_tool(lumcad,output,lumbat,file) n@node@_lumstr.sh
set WB_tool(lumcad,output,lumlog,file) n@node@_lumstr_p0.log
set WB_tool(lumcad,output,matlabmat,file) n@node@_lummat.mat
set WB_tool(lumcad,output,files) "n@node@_* pp@node@_*"
set WB_tool(lumcad,interactive,option) "−edit"
set WB_tool(lumcad,batch,option) "−run"
lappend WB_tool(all) lumcad
#TOOL END

#TOOL BEGIN matlab
set WB_tool(matlab,category) gridgen
set WB_tool(matlab,visual_category) gridgen
set WB_tool(matlab,acronym) mat
set WB_tool(matlab,after) all
set WB_manual(matlab) /usr/matlab/help/begin_here.html
set Icon(matlab) $env(STDB)/ico/matlab.gif
set WB_tool(matlab,exec_mode) batch ; # (interactive | batch)
set WB_tool(matlab,setup) { os_ln_rel @matlabm@ n@node@_mat.m "@pwd@" }
set WB_tool(matlab,epilogue) { extract_vars "$wdir" @stdout@ @node@ }
set WB_binaries(tool,matlab) "matlab"
set WB_tool(matlab,cmd_line) "< n@node@_mat.m"
set WB_tool(matlab,input) [list matlabm]
set WB_tool(matlab,input,matlabm,file) @toolname@_mat.m
set WB_tool(matlab,input,matlabm,newfile) @toolname@_mat.m
set WB_tool(matlab,input,matlabm,label) "Matlab m−file..."
set WB_tool(matlab,input,matlabm,editor) text
set WB_tool(matlab,input,matlabm,parametrized) 1
set WB_tool(matlab,output) [list doping grid]
set WB_tool(matlab,output,doping,file) n@node@_optgen.dat
set WB_tool(matlab,output,grid,file) n@node@_optgen.grd
set WB_tool(matlab,output,files) "n@node@_* pp@node@_*"
set WB_tool(matlab,interactive,option) ""
set WB_tool(matlab,batch,option) "−nojvm −nodisplay"



B.10. SELECTED SOURCE CODE 23

lappend WB_tool(all) matlab
#TOOL END

#INPUT−EDITORS BEGIN
set WB_binaries(editor,text) gedit
lappend WB_editor(all) text
set WB_binaries(editor,lumstructure) CAD
lappend WB_editor(all) lumstructure
#INPUT−EDITORS END

#OUTPUT−VIEWERS BEGIN
set WB_viewer(lumstructure,files) "\{*n@node@_*.fsp\}"
set WB_viewer(lumstructure,label) ".fsp Files (Lumerical CAD)"
set WB_viewer(lumstructure,nbfiles) 3
set WB_viewer(lumstructure,cmd_line) @files@
set WB_viewer(lumstructure,exec_dir) @pwd@
set WB_binaries(viewer,lumstructure) CAD−noaccel
lappend WB_viewer(all) lumstructure

set WB_viewer(lumbat,files) "\{*n@node@_*.sh\}"
set WB_viewer(lumbat,label) "Shell file (for MPI−Lumerical)"
set WB_viewer(lumbat,nbfiles) 3
set WB_viewer(lumbat,cmd_line) @files@
set WB_viewer(lumbat,exec_dir) @pwd@
set WB_binaries(viewer,lumbat) gedit
lappend WB_viewer(all) lumbat

set WB_viewer(lumlog,files) "\{*n@node@_lumstr_p0.log\}"
set WB_viewer(lumlog,label) "Lumerical log file"
set WB_viewer(lumlog,nbfiles) 5
set WB_viewer(lumlog,cmd_line) @files@
set WB_viewer(lumlog,exec_dir) @pwd@
set WB_binaries(viewer,lumlog) "gnome−terminal −x tail −f −n +1"
lappend WB_viewer(all) lumlog

set WB_viewer(matlabmat,files) "\{*n@node@_matlabmat.mat\}"
set WB_viewer(matlabmat,label) "Matlab MAT file"
set WB_viewer(matlabmat,nbfiles) 3
set WB_viewer(matlabmat,cmd_line) @files@
set WB_viewer(matlabmat,exec_dir) @pwd@
set WB_binaries(viewer,matlabmat) matlab
lappend WB_viewer(all) matlabmat
#OUTPUT−VIEWERS END

#RunLimits
#accepted values for restriction_model:
#none,per_project,per_user,per_swb
set WB_limits(restriction_model) "per_user"
set WB_limits(lumcad,run_limit) 4
set WB_limits(matlab,run_limit) 4
#Run Limits end

#TCL−SOURCE BEGIN
# MK 2009
proc make_sh_executable { wdir node} {

foreach file [glob −nocomplain −directory $wdir n${node}*.sh] {
file attributes $file −permissions 00755

}
}
#TCL−SOURCE END
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B.10.2 Lumerical structure generation script

Listing B.2. Lumerical script for preparing FDTD simulation structures
(lumcad lcs.lsf).

################################################################################
#
# Lumerical structure−generating script
# (c) 2009 Michael Kelzenberg
# California Institute of Technology
#
# This script loads a "template" file and modifies it according to the paramters
# set for this node in SWB (i.e., wavelength and polarization). The input/
# output files are defined below.
#
# Tip: Be carefule using "#" to comment out lines. This can confuse the
# sentaurus pre−processor. As a rule, always put a space after "#" if you are
# writing comments.
#
################################################################################

clear;

template_file = "lumcad_template.fsp";
lumstr_file = "n@node@_lumstr.fsp";

Polarization = "@Polarization@";
Lambda = @Wavelen@ * 1e−9; # (m)

WireDiameter = 1.61e−6;
BoxWidth = 1.8e−6; #This is the width of the monitors surrounding the wire
IllumWidth = 4e−6; #This is the width of the illumination source

write("Single−wire solar cell FDTD structure generator script for LUMERICAL");
write("Michael Kelzenberg, 2010");
write("Settings: "+Polarization+"−polarization, "+num2str(Lambda*1e+9)+" nm.");
write("Loading template file: " + template_file);

load(template_file);

switchtolayout;

setparallel("Shell/batch file type","Linux multi−processors");
setparallel("Create parallel shell/batch file when saving fsp file",1);
setparallel("Number of processors per node",2);

simulation;
select("FDTD");

# Select a reasonable simulation duration (longer than will be required)
set("simulation time",1e−12);
if( Lambda > 800e−9 ) {

set("simulation time",5e−12);
}
if( Lambda > 950e−9 ) {

set("simulation time",10e−12);
}
if( Lambda > 1070e−9 ) {

set("simulation time",20e−12);
}

# Set correct boundary conditions depending on polarization
if( Polarization == "TE" ) {

set("x min bc","Anti−Symmetric");
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} else {
set("x min bc","Symmetric");

}

# Set wavelength and polarization of the source
sources;
select("singleSource");
set("amplitude",86.8); #86.8 V/m is a illum. intensity of 1 mW/cm2
set("polarization",Polarization);
set("wavelength start",Lambda);
set("wavelength stop",Lambda);

# Set the bandwith for partial spectral averaging
monitors;
freq = 2.998e+8/Lambda;
n = real(getindex("SiAspnes",freq));
waveFract = 1; # 2 is for half−wave, 1 for full−wave
deltaF = freq / (1 + (waveFract*WireDiameter*n/Lambda) );

write("Partial spectral averaging deltaF = " + num2str( deltaF/1e12 ) + " THz");

select("topMonitor");
set("delta",deltaF);
select("bottomMonitor");
set("delta",deltaF);
select("leftMonitor");
set("delta",deltaF);
select("rightMonitor");
set("delta",deltaF);
select("wireMonitor");
set("delta",deltaF);

write("Saving modified structure: " + lumstr_file);

save(lumstr_file);

write("Completed successfully");

exit(2);

B.10.3 FDTD execution shell script

Listing B.3. Shell script (csh) for launching MPI FDTD simulations from SWB
(cshell csh.cmd).

# Shell script for invoking FDTD simulations
# Michael Kelzenberg, 2010 (c)
# California Institute of Technology

# This script executes the .sh file generated by the prior Lumerical CAD step
# then parses the output to ensure that the simulation ran to completion.

#setdep @previous@

# TCL code in our tooldb file now takes care of setting the execut bit for
# Lumerical's MPI shell scripts, so the following is not needed here:
# chmod 755 *.sh

echo "*******************************************************************************"
echo "Shell script for running Lumerical FDTD simulations"
echo "Michael Kelzenberg, 2010"
echo ""
echo "Warning! Using 'Abort' in SWB will NOT terminate MPI FDTD simulations."
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echo "You must manually kill each process."
echo ""
echo "*******************************************************************************"

./n@node|lumcad@_lumstr.sh

echo ""
echo "*******************************************************************************"
echo "FDTD complete."
echo "*******************************************************************************"
echo "Last 20 lines of simulation log file:"
echo ""
tail −n 20 n@node|lumcad@_lumstr_p0.log
echo ""
echo "*******************************************************************************"
if ( { grep −q "Simulation completed successfully" \

n@node|lumcad@_lumstr_p0.log } ) then
if ( { grep −q "the autoshutoff criteria are satisfied" \

n@node|lumcad@_lumstr_p0.log } ) then
echo "Auto−shuttoff criteria were reached. Simulation complete."
echo −n "************************************************************************"
echo "*******"
exit 0

else
echo "ERROR: The auto−shutoff criteria were not reached. Simulation is incomplete."
echo "This typically means that simulation results are invalid. This node has been"
echo "marked as FAILED to prevent unintentional use of these simulation results."
echo ""
echo "If these results are indeed correct, this error check can be disabled within "
echo "the shell script for this tool."
endif

else
echo "ERROR: The simulation does not appear to have finished successfully. "
echo "Please check the log file for more information."

endif

echo "*******************************************************************************"
exit 1

B.10.4 MATLAB mesh conversion script

Listing B.4. MATLAB mesh conversion script (matlab mat.m).

# MATLAB optical generation grid conversion script for lumsen project
# (c) 2010 Michael Kelzenberg
# California Institute of Technology

#setdep @previous@
#setdep @node|sde@
#setdep @node|lumcad@

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% MATLAB script for importing arbitrary profiles onto DF−ISE simulation
% grids for use with Sentaurus TCAD.
%
% Michael Kelzenberg, 2010
%
% This script reads a DF−ISE .dat file to determine the spatial coordinates of
% of each grid point. It then generates a new .dat file containing an
% OpticalGeneration profile that was calculated by FDTD. The key input/output
% settings and the mapping function are indicated by comments in the code.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%DAT file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
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%This should be a valid DF−ISE .dat file (i.e. generated by mesh or
%noffset3d. The meshing program must be scripted to store the x− and y−
%position of each vertex of the grid as "PMIUserField0" and
%"PMIUserField1", respectively.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

datFile = 'n@node|sde@_msh.dat';
grdFile = 'n@node|sde@_msh.grd';

%FDTD MAT file %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%This should be the Matlab MAT file generated by the Lumerical CAD script
%including:
% Pabs_x,Pabs_y X and Y specification of grid (m)
% freq Freq. of simulation (Hz)
% Pabs * Matrix of power absorption (W/m3)
% Ngen * Matrix of optical generation rate (per cm3 per s)
% IntgPwr * Total power absorption (W/m)
% Current * Total photocurrent (A per um device length)
% Absfrac * Fraction of absorbed light, i.e. Absorption Quantum Efficiency
% *these variables followed by '_pavg' corespond to partial spectral averaging
%
% Note: presently, only Pabs_x, Pabs_y, and Ngen_pavg are used by this script.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

FDTDFile = 'n@node|lumcad1@_lummat.mat';

%Regions to process %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%These are the regions to perform the optical generation mesh conversion.
%This must be a cell array of region names, including double−quotes (")
%around each region name!!!
% Example syntax: regionsToProcess = {'"Base_region"', "Emitter_region"' };
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
regionsToProcess = {'"InnerContact_region"' '"Emitter_region"' '"Base_region"'};

%The output dat and grd files are used for monochromatic−illumination device
% physics simulations (the next step in this experiment).
outputFile = ['n@node@_optgen.dat'];
outputGrid = ['n@node@_optgen.grd'];

%The export data file (.mat) is saved so that a MATLAB script can sum together
% multiple single−wavelength simulations to approximate solar illumination.
% We chose a file name that is unique to the wavelength, polarization, and
% the device physics simulation grid:
exportFile = 'n@node|sde@_OptGen@Wavelen@@Polarization@.mat';

%Number of data values to output per line in output DAT file
numperline = 10;

try

disp('');
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
disp(['OptGenConverter Version 2']);
disp(['(c) 2010 Michael Kelzenberg']);
disp(['California Institute of Technology']);
disp('−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−');
disp(' ');

% A wavelength value of '15' is the signal to assemble 1−sun AM1.5G illumination
if (@Wavelen@ == 15)

nodenum = @node@; nodenum_sde = @node|sde@;
disp(['Invoking am15proc.m script to generate combined−wavlength OptGen' ...

' profile...']);
disp(' ');
disp('This will fail if the prerequisite single−wavelength FDTD profiles');
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disp(' have not been generated for this device physics simulation grid,');
disp(' (n@node|sde@)');
disp(' ');
am15proc;
exit(0);

end

disp(['Opening DAT file ' datFile ]);

grd = fopen(datFile);
if (grd < 1)

error(['Error opening file ' datFile ' for reading.']);
%exit

end

if ( ~isequal( fgetl(grd), 'DF−ISE text'))
disp('Error with grid file format: It might not be a DF_ISE text file.');
disp('Please double−check input file. The first line should read:');
disp(' DF−ISE text');
error('File parse error');

end
fln = 1;

verts = [];
regions = {};

nl = fgetl(grd); fln=fln+1;
while( isempty( regexp(nl, 'nb_vertices *= *[0−9]+') ) && ~feof(grd) )

nl = fgetl(grd); fln=fln+1;
end
tmp=regexp(nl, '[0−9]+','match');
numverts = str2num(tmp{1});
disp([' File reports ' num2str(numverts) ' vertices']);

nl = fgetl(grd); fln=fln+1;
while( isempty( regexp(nl, 'nb_edges *= *[0−9]+') ) && ~feof(grd) )

nl = fgetl(grd); fln=fln+1;
end
tmp=regexp(nl, '[0−9]+','match');
numedges = str2num(tmp{1});
disp([' File reports ' num2str(numedges) ' edges']);

nl = fgetl(grd); fln=fln+1;
while( isempty( regexp(nl, 'nb_elements *= *[0−9]+') ) && ~feof(grd) )

nl = fgetl(grd); fln=fln+1;
end
tmp=regexp(nl, '[0−9]+','match');
numelems = str2num(tmp{1});
disp([' File reports ' num2str(numelems) ' elements']);

nl = fgetl(grd); fln=fln+1;
while( isempty( regexp(nl, 'nb_regions *= *[0−9]+') ) && ~feof(grd) )

nl = fgetl(grd); fln=fln+1;
end
tmp = regexp(nl, '[0−9]+','match');
numregions = str2num(tmp{1});
disp([' File reports ' num2str(numregions) ' regions']);

%Advance to data section of file...
nl = fgetl(grd); fln=fln+1;
while( isempty( regexp(nl, 'Data.*\{', 'once') ) && ~feof(grd) )

nl = fgetl(grd); fln=fln+1;
end
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if ( feof(grd) )
disp('Unexpected end−of−file, no data processed.');
disp(['Line: ' num2str(fln)]);
error('File parse error.');

end

regionArray = [];
disp(' ');
disp('Reading data points...');
%Main reading loop. Look for PMIUserField 0 or 1 data sets...
while ~feof(grd)

nl = fgetl(grd); fln=fln+1;
while ( isempty( regexpi(nl,'\s*function\s*=\s*PMIUserField[01]','once'))...

&& ~feof(grd) )
nl = fgetl(grd); fln=fln+1;

end
if (feof(grd))

break
end

tmp = regexp(nl, '[01]','match');
axisNumber = str2num(tmp{1});

nl = fgetl(grd); fln=fln+1;
while ( isempty( regexpi(nl, '\s*validity\s*=\s*\[\s*".*"\s*\]', 'once'))...

&& ~feof(grd) )
nl = fgetl(grd); fln=fln+1;

end

if (feof(grd))
error(['File Parse Error near line ' num2str(fln)]);
break

end
tmp = regexp(nl, '".*"','match');
regionName = tmp{1};

nl = fgetl(grd); fln=fln+1;
while ( isempty( regexpi(nl, '\s*Values\s*\(\s*[0−9]+\s*\)', 'once') )...

&& ~feof(grd) )
nl = fgetl(grd); fln=fln+1;

end

if (feof(grd))
disp(['File Parse Error near line ' num2str(fln)]);
break

end
tmp = regexp(nl, '[0−9]+','match');
numElems = str2num(tmp{1});

dataPoints = [];
while (1)

nl = fgetl(grd); fln = fln+1;
if(isempty(regexp(nl,'[0−9]+') ) )

break
else

thisline = regexp(nl,'[\.\−\e\E\+0−9][\s\.\−\e\E\+0−9]*','match');
thisline = thisline{1};
dataPoints = [dataPoints str2num(thisline)];

end
if ( ~isempty(regexp(nl,'}','once') ))

break
end

end
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disp([' Region ' regionName ' read ' num2str(length(dataPoints)) '/' ...
num2str(numElems) ' elements for axis ' num2str(axisNumber) ]);

%Error if data points disagree with number stated in header
if ( numElems ~= length(dataPoints) )

disp(['Error: number of data points does not match file header']);
disp(['Parse error near line ' num2str(fln)]);
error(['File structure error in region ' regionName]);

end

existingRegion = 0;
for n=1:length(regionArray)

canRegion = regionArray{n};
if (isequal(regionName,canRegion.name))

existingRegion = n;
end

end

if (existingRegion)
if (axisNumber == 0)

regionArray{existingRegion}.xdata = dataPoints;
else

regionArray{existingRegion}.ydata = dataPoints;
end

if ~isequal( length(regionArray{existingRegion}.xdata), ...
length(regionArray{existingRegion}.ydata) )

disp(['Error: number of x data points does not match number of ' ...
'y data points']);

error(['File structure error in region ' regionName ]);
end

else
newRegion.name = regionName;
if (axisNumber == 0)

newRegion.xdata = dataPoints;
newRegion.ydata = [];

else
newRegion.ydata = dataPoints;
newRegion.xdata = [];

end
newRegion.gdata = zeros(size(dataPoints));

regionArray{end+1} = newRegion;
end

end

for n=1:length(regionArray)
if ~isequal( length(regionArray{n}.xdata), length(regionArray{n}.ydata) )

disp(['Error: number of x data points does not match number of '...
'y data points']);

error(['File structure error in region ' regionArray{n}.name ]);
end

end

disp(' ');
disp('Completed reading DAT file');
disp([' Read ' num2str(length(regionArray)) ' region(s)']);
disp(' ');
fclose(grd);

%Now ensure that data was successfully read for all requested regions
regionsToProcess = unique(regionsToProcess);
for n=1:length(regionsToProcess)
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reqName = regionsToProcess{n};
hasRegion = 0;
for m=1:length(regionArray)

if isequal( reqName, regionArray{m}.name )
hasRegion=1;

break;
end

end
if ~hasRegion

disp(['Error: Vertex position information for requested region ' ...
reqName ' not contained within this grid.']);

error(['Unable to process region: ' reqName ]);
end

end

% We're done parsing grid file −− Now we load FDTD results and define the
% mapping function. Note that the spatial translation applied to the x− and
% y−coordinates in the mapping function is specific to the project geometry:
disp(' ');
disp(['Loading MAT file ' FDTDFile ]);
load(FDTDFile);
optGenMatrix = OptGen';
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%Mapping function:
newoptgen = @(xi, yi) interp2(Pabs_x,Pabs_y, optGenMatrix, xi*1e−6,yi*1e−6 );
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Now ready to write the output data file...
disp(['Opening output file ' outputFile ]);

ogo = fopen(outputFile,'w');
if (ogo < 1)

error(['Error opening file ' outputFile ' for writing.']);
end

fprintf(ogo, 'DF−ISE text\n\n');
fprintf(ogo, ...

'Info {\n version = 1.0\n type = dataset\n dimension = 2\n');
fprintf(ogo, ' nb_vertices = %d\n nb_edges = %d\n nb_faces = 0\n',...

numverts, numedges);
fprintf(ogo, ' nb_elements = %d\n nb_regions = %d\n datasets = [ ',...

numelems, numregions);
for n=1:length(regionsToProcess)

fprintf(ogo,'"OpticalGeneration" ');
end
fprintf(ogo, ']\n functions = [ ');

for n=1:length(regionsToProcess)
fprintf(ogo,'OpticalGeneration ');

end
fprintf(ogo, ']\n}\n\nData {\n\n');

for n=1:length(regionsToProcess)
reqName = regionsToProcess{n};
hasRegion = 0;
for m=1:length(regionArray)

if isequal( reqName, regionArray{m}.name )
hasRegion=m;
break;

end
end
if (hasRegion)

reg = regionArray{hasRegion};

disp( ['Proessing Optical Generation for region ' reg.name '...'] );
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fprintf(ogo,['Dataset ("OpticalGeneration") {\n function = '...
'OpticalGeneration\n type = scalar\n dimension = 1\n'...
'location = vertex\n validity = [ ' reg.name ' ]\n' ] );

fprintf(ogo, ' Values (%d) {\n', length(reg.xdata) );

gdata = zeros(size(reg.xdata));
nl = 1;
for nv=1:length(reg.xdata)

ogi = newoptgen(reg.xdata(nv), reg.ydata(nv));
fprintf(ogo, ' %22e', ogi);

gdata(nv) = ogi;
nl = nl + 1;
if (nl > 10)

fprintf(ogo, '\n');
nl = 1;

end
end
if (nl > 1)

fprintf(ogo,'\n');
end
fprintf(ogo, ' }\n}\n\n');

disp( [' ' num2str(length(reg.xdata)) ' processed'] );
regionArray{hasRegion}.gdata = gdata;

end
end

fprintf(ogo,'\n\n}');
fclose(ogo);
disp(['Finished writing output file ' outputFile ]);

disp(' ');
disp(['Copying from grid file: ' grdFile]);
copyfile(grdFile,outputGrid);
disp(['To grid file: ' outputGrid]);

disp(' ');
disp(['Exporting generation profile: ' exportFile ]);
save( exportFile ,'regionArray','numverts','numedges','numelems','numregions');

disp(' ');
disp('Processing complete!');

exit(0);

catch ME
disp(ME);
exit(1); %This will mark the node as 'failed' in SWB.

end
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B.11 Solar spectrum weightings for discrete simulations

Table B.1. Discrete solar spectrum, 100 nm bins.

Wavelength AM 1.5G AM 1.5D

Beam Bin P Jph P Jph
(nm) (nm) mW⋅cm−2 mA⋅cm−2 mW⋅cm−2 mA⋅cm−2

350 (300–400) 4.792 1.353 3.193 0.901

450 (400–500) 14.059 5.103 11.625 4.219

550 (500–600) 15.093 6.695 13.374 5.933

650 (600–700) 13.898 7.286 12.572 6.591

750 (700–800) 11.302 6.837 10.331 6.249

850 (800–900) 9.440 6.472 8.758 6.004

950 (900–1000) 5.637 4.320 5.298 4.060

1050 (1000–1100) 6.444 5.457 6.084 5.153

1150 (1100–1200) 3.168 2.939 3.022 2.803

1250 (1200–1300) 4.300 4.335 4.111 4.145

1350 (1300–1400) 1.167 1.270 1.121 1.220

1450 (1400–1500) 0.701 0.820 0.682 0.797

1550 (1500–1600) 2.554 3.193 2.481 3.102

1650 (1600–1700) 2.209 2.940 2.149 2.860

1750 (1700–1800) 1.444 2.038 1.407 1.987

1850 (1800–1900) 0.023 0.034 0.022 0.033

1950 (1900–2000) 0.283 0.446 0.279 0.438

2050 (2000–2100) 0.688 1.138 0.678 1.120

2150 (2100–2200) 0.848 1.470 0.835 1.448

2250 (2200–2300) 0.699 1.268 0.690 1.252

2350 (2300–2400) 0.483 0.915 0.478 0.906

Table B.2. Discrete solar spectrum, 50 nm bins.

Wavelength AM 1.5G AM 1.5D

Beam Bin P Jph P Jph
(nm) (nm) mW⋅cm−2 mA⋅cm−2 mW⋅cm−2 mA⋅cm−2

325 (300–350) 1.416 0.371 0.817 0.214

375 (350–400) 3.246 0.982 2.272 0.687

425 (400–450) 6.192 2.123 4.925 1.688

475 (450–500) 7.779 2.980 6.606 2.531
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Discrete solar spectrum, 50 nm bins

Wavelength AM 1.5G AM 1.5D

Beam Bin P Jph P Jph
(nm) (nm) mW⋅cm−2 mA⋅cm−2 mW⋅cm−2 mA⋅cm−2

525 (500–550) 7.642 3.236 6.708 2.841

575 (550–600) 7.460 3.460 6.667 3.092

625 (600–650) 7.198 3.628 6.500 3.277

675 (650–700) 6.719 3.658 6.087 3.314

725 (700–750) 6.006 3.512 5.467 3.197

775 (750–800) 5.318 3.324 4.884 3.053

825 (800–850) 4.874 3.243 4.510 3.001

875 (850–900) 4.575 3.228 4.256 3.003

925 (900–950) 2.652 1.978 2.488 1.856

975 (950–1000) 2.977 2.341 2.802 2.203

1025 (1000–1050) 3.470 2.868 3.269 2.703

1075 (1050–1100) 2.986 2.589 2.825 2.449

1125 (1100–1150) 1.190 1.080 1.134 1.029

1175 (1150–1200) 1.961 1.858 1.871 1.774

1225 (1200–1250) 2.259 2.232 2.157 2.131

1275 (1250–1300) 2.046 2.104 1.958 2.014

1325 (1300–1350) 1.186 1.268 1.140 1.218

1375 (1350–1400) 0.002 0.002 0.002 0.002

1425 (1400–1450) 0.123 0.141 0.119 0.137

1475 (1450–1500) 0.570 0.678 0.555 0.660

1525 (1500–1550) 1.289 1.586 1.252 1.540

1575 (1550–1600) 1.265 1.607 1.229 1.562

1625 (1600–1650) 1.154 1.513 1.121 1.470

1675 (1650–1700) 1.057 1.428 1.029 1.390

1725 (1700–1750) 0.892 1.241 0.870 1.210

1775 (1750–1800) 0.556 0.796 0.542 0.776

1825 (1800–1850) 0.023 0.033 0.022 0.033

1875 (1850–1900) 0.000 0.000 0.000 0.000

1925 (1900–1950) 0.014 0.022 0.014 0.022

1975 (1950–2000) 0.266 0.424 0.261 0.416

2025 (2000–2050) 0.309 0.504 0.304 0.496

2075 (2050–2100) 0.379 0.634 0.373 0.625

2125 (2100–2150) 0.448 0.768 0.441 0.756

2175 (2150–2200) 0.400 0.702 0.394 0.691
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Discrete solar spectrum, 50 nm bins

Wavelength AM 1.5G AM 1.5D

Beam Bin P Jph P Jph
(nm) (nm) mW⋅cm−2 mA⋅cm−2 mW⋅cm−2 mA⋅cm−2

2225 (2200–2250) 0.374 0.671 0.369 0.662

2275 (2250–2300) 0.325 0.597 0.322 0.590

2325 (2300–2350) 0.276 0.517 0.273 0.512

2375 (2350–2400) 0.208 0.398 0.206 0.394

Listing B.5. MATLAB script for integrating/binning the solar spectrum.

function [totalinputcurrent totalinputpower centerpts beampwr specpwr ...
beamphot warnstring] = spectralCalculator(bins, centerpts)

% spectralCalculator(bins, centerpts) Calculates the discrete weightings
% for optical simulations based on
% 'binning' a continuous reference
% spectrum (e.g. the solar spectrum)
% into individual 'beams'.
%
% Arguments:
% centerpts − (n) discrete wavelengths for simulations ('beams')
% Note: centerpts can be left empty to have the 'beam' wavelengths
% chosen automatically, in a manner which conserves energy as well
% as photon flux. (Arbitrarily chosen beam energies will not
% genearlly conserve power.)
% bins − a list of (n+1) wavelengths, specifying the wavelength range
% over which to sum photons for each 'beam'. The power of the nˆth
% beam is calculated by summing the photons from bins(n) to bins(n+1).
%
% Environment:
% The workspace must contain the global variable SPECDATA:
% (first column) − reference spectrum wavelengths (nm)
% (second column) − power spectral density (mW/cm2/nm)
% (third column) − photon flux spectral density (per cm2 per nm)
% See also: loadSpectrum.m
%
% Outputs
% totalinputcurrent − Photocurrent of reference spectrum within bin
% range (mA/cm2)
% totalinputpower − Power within binned range of reference spectrum
% (mW/cm2)
% centerpts − The wavelength of each 'beam' (nm)
% beampwr − The power of each 'beam' (mW/cm2)
% specpwr − The spectral power density of each beam
% (mW/cm2/nm)
% beamphot − The photon flux of each beam (per cm2 per s)
% warnstring − Diagnostic error message
%
% Example use:
% spectralCalculator([280 1100],800)
% ans =
% 43.7352
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global SPECDATA;

wl_ = SPECDATA(:,1);
phot_ = SPECDATA(:,3);
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pwr_ = SPECDATA(:,2);

if (isempty(centerpts))
autocenter = 1;
centerpts = zeros(1,length(bins)−1);

else
autocenter = 0;

end

numBins = length(centerpts);

beampwr = zeros(1,numBins);
specpwr = zeros(1,numBins);
beamphot = zeros(1,numBins);

photspectraldensity = @(wl) interp1(wl_, phot_, wl);
pwrspectraldensity = @(wl) interp1(wl_, pwr_, wl);
binphots = @(wl1, wl2) quadgk( photspectraldensity, wl1, wl2, ...

'MaxIntervalCount', 5000);
binpwr = @(wl1, wl2) quadgk( pwrspectraldensity, wl1, wl2, ...

'MaxIntervalCount', 5000);

totalInputCurrent = 1e3*1.61E−19*binphots(bins(1), bins(end)); %mA/cm2
totalInputPower = quad( pwrspectraldensity, bins(1), bins(end)); %mW/cm2

warnstring = [];

for nBin=1:numBins
photsInBin = binphots( bins(nBin), bins(nBin+1) ); %num/cm2/sec
energyInBin = binpwr( bins(nBin), bins(nBin+1) ) / 1000 / 1.61E−19;

%eV/cm2/sec
if (autocenter)

photEnergy = energyInBin / photsInBin;
photWl = 1.24 / photEnergy * 1000;
centerpts(nBin) = photWl;

else
photEnergy = 1.24 / (centerpts(nBin) / 1000);

end
beamphot(nBin) = photsInBin; %num/cm2/sec
beampwr(nBin) = photsInBin * photEnergy * 1.61E−19 * 1000; %mW/cm2
specpwr(nBin) = beampwr(nBin) / (bins(nBin+1) − bins(nBin));

%mW/cm2/nm
if ( centerpts(nBin) > bins(nBin+1) || centerpts(nBin) < bins(nBin) )

warnstring = ['Warning: At least one bin wavelength lies '...
'outside the boundaries for that bin.'];

end
end

totalinputcurrent = totalInputCurrent;
totalinputpower = totalInputPower;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function FileName = loadSpectrum
% loadSpectrum load raw spectum data from the ASTM G173−03 file:
% col 1: Wavelength nm
% col 2: W*m−2*nm−1
%
% Inputs: none (prompts file dialog)
% Outputs:
% FileName − the name of the selected file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

global SPECDATA;
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[FileName,PathName] = uigetfile('*.asc','Select spectrum data file');

SPECDATA = load([PathName FileName]);

%convert to mW/cm2/nm
SPECDATA(:,2) = SPECDATA(:,2)*1000/100/100;

%add col. for photons/cm2/nm
energies = 1.24 ./ (SPECDATA(:,1)./1000) * 1.61E−19; %energy/photon (J)

SPECDATA(:,3) = SPECDATA(:,2)./1000./energies;

%add col. for photocurrent/cm2/nm
SPECDATA(:,4) = SPECDATA(:,3).*1.61E−19;
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